Parenteral Nutrition in the NICU

By Liesje Nieman, RD, CSP, LDN

Reviewed and recertified January 2011

Complete examination by September 30, 2014

Learning Objectives:

Upon completion of this module, the learner will be able to:

1. List the indications for parenteral nutrition in the preterm infant.
2. Estimate protein and calories required by a preterm infant to support appropriate fetal weight gain.
3. Determine appropriate fluid and electrolyte needs of preterm infants.
4. Discuss the types of access that can be used for parenteral nutrition in the preterm infant.
5. Determine an appropriate parenteral solution that contains dextrose, amino acids and lipids for a preterm infant.
6. Explain the best way to provide preterm infants vitamins and minerals that meet their specific needs.
7. Develop a monitoring schedule of the preterm infant on parenteral nutrition.
8. Discuss the calcium and phosphorus needs of preterm infants.

Infants in the neonatal intensive care unit (NICU) often require nutrition support, particularly premature infants. Parenteral nutrition (PN), the delivery of nutrients into the circulatory system, is used in the first days of life to maximize caloric intake while oral feedings or enteral feedings (e.g. nasogastric), or a combination of the two methods, are established. This module discusses the assessment and prescription of PN for the preterm infant in the NICU.
Given that most fetal nutrient stores are deposited during the last three months of pregnancy, premature infants have very minimal caloric reserves. For example, in a preterm infant weighing 1 kg, fat contributes only 1 percent of total body weight, as compared to a term infant (3.5 kg), whose weight is about 16 percent fat (Anderson, 1996).

In situations where adequate nutrition support cannot be achieved and fat and glycogen stores have been exhausted, infants begin to catabolize protein stores for energy. If it is anticipated that an infant will not receive enteral feedings for two to three days, PN should be initiated. Premature infants often do not tolerate enteral feedings due to their small stomach capacity and immature gastrointestinal tract (Anderson, 1996). Gastric emptying and intestinal transit times are significantly delayed as compared to the term infant. “Organized” gut motility does not begin until 32 to 34 weeks gestation (Thureen and Hay, 2001).

Although it is intuitively understood by most that early aggressive nutrition support for premature infants has a positive impact on outcomes evaluated later in life (such as growth and cognitive function), research confirming long-term outcomes is limited. In 2009, Stephens, et al. evaluated the impact of early protein and energy intake on neurodevelopment and growth of extremely low birth weight (below 1000 gm) infants (Stephens, 2009). The data revealed that increased protein and energy intakes in the first week of life are “…associated with higher Mental Development Index scores and lower likelihood of length growth restrictions at 18 months in extremely low birth weight infants.”

Indications for Parenteral Nutrition

PN should be initiated immediately for medical conditions where enteral feedings are contraindicated until the medical situation allows for safe initiation of enteral feedings. The majority of cases in the NICU requiring PN support are due to either gastrointestinal (GI) malformations or necrotizing enterocolitis (NEC).

GI malformations include omphalecele, gastroschisis, intestinal atresia, volvulus, and Hirschsprung’s disease. An omphalacele is a “congenital herniation of viscera (e.g. internal organs) into the base of the umbilical cord, with a covering membranous sac” (Dirckx, 1997). In contrast, gastroschisis is a “defect in the abdominal wall resulting from rupture of the amniotic membrane… usually accompanied by protrusion of viscera (e.g. internal organs)” (Dirckx, 1997).

The surgical repair of these malformations is complex, but essentially the bowel and other organs that are outside of the abdominal cavity are reinserted into the abdominal cavity space and the area is sutured closed. Recovery from omphalacele is generally quicker than gastroschisis because the membranous sac protected the bowel during pregnancy. In gastroschisis, the bowel is often quite dilated and inflamed because of exposure to amniotic fluids. Intestinal atresia is the absence of a normal opening; in other words, the intestinal lumen has a closure where it should be a continuous segment. A volvulus is a “twisting of the intestines causing an obstruction” (Dirckx, 1997). Hirschsprung’s disease, a lack of ganglion cells in the affected segment, is also referred to as congenital megacolon. Intestinal atresia and Hirschsprung’s both require surgical repair.

NEC is defined as inflammation or necrosis of areas of the intestinal tract (Anderson, 1996). Hallmark indications of NEC are dilated loops of bowel and pneumatosis on x-ray, increased abdominal girth and high gastric residual volume. Some cases of NEC are classified as “medical” because a period of bowel rest and administration of antibiotics is sufficient to promote a full recovery. During acute NEC, feedings are frequently held for seven to 21 days to facilitate recovery. Surgical NEC is the term used for cases that require surgical intervention, such as peritoneal drain placement and/or intestinal resection due to bowel perforation. The cause of NEC is unknown and multi-factorial. In the past, rapid titration of feedings was implicated as the cause of NEC, but
more recently this association has been questioned (Henderson, *et al.*, 2007; Kamitsuka, *et al.*, 2000; Rayyis, *et al.*, 1999).

GI malformations and NEC may require extensive bowel resection, causing intestinal failure, SBS (also known as short bowel syndrome), and functional SBS. There is ever-growing literature discussing these three conditions, and optimal nutritional treatments for each. Intestinal failure results from obstruction, dysmotility, surgical resection, congenital defect, or disease-associated loss of absorption and is characterized by the inability to maintain protein-energy, fluid, electrolyte, or micronutrient balance (O’Keiffe, 2006). SBS symptoms include weight loss, muscle wasting, diarrhea, rapid GI transit time, malabsorption, dehydration and electrolyte imbalance (Tyus, 1996). Functional SBS is when intestinal dysfunction is associated with malabsorption and the characteristics described above, despite adequate intestinal length. These conditions comprise the primary causes for long-term PN support.

Normal Intestinal Length

<table>
<thead>
<tr>
<th>Age</th>
<th>Mean Intestinal Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 weeks gestation</td>
<td>125 cm</td>
</tr>
<tr>
<td>30 weeks gestation</td>
<td>200 cm</td>
</tr>
<tr>
<td>40 weeks gestation</td>
<td>275 cm</td>
</tr>
<tr>
<td>1 year</td>
<td>380 cm</td>
</tr>
<tr>
<td>5 years</td>
<td>450 cm</td>
</tr>
<tr>
<td>10 years</td>
<td>500 cm</td>
</tr>
<tr>
<td>20 years</td>
<td>575 cm (ranges 350–700 cm)</td>
</tr>
</tbody>
</table>

Diaphragmatic hernia often requires PN until surgical repair of the hernia occurs, and the stomach and/or intestines are returned to a more anatomically correct place in the abdominal cavity and are functioning (*e.g.* stooling).

Other medical conditions that *may* warrant the use of PN support include the following: intractable, nonspecific diarrhea; extra corporeal membrane oxygenation (ECMO); administration of prostaglandin; and vasopressor support (*e.g.* dopamine, dobutamine). ECMO and vasopressor support may not be absolute contraindications to enteral feedings; however, many neonatologists are hesitant to enterally feed infants with hemodynamic instability due to risk of bowel ischemia because these conditions are associated with decreased blood profusion to the gut. Concerns about NEC and the possible effect of hypoxia on the gut have led to the use of PN as the main source of nutritional support for infants on ECMO or vasopressor support. However, a study was done in which infant subjects on ECMO received full-strength, continuous enteral feedings administered via either nasogastric or post-pyloric feeding tubes (Pettignano, *et al.*, 1998). There were no documented cases of NEC or intestinal perforation. Although the parenteral group achieved goal calories first (3.07 plus or minus 2.1 days for PN; 4.25 plus or minus 2.6 days for enteral), the benefits of enteral nutrition far outweigh the risks of PN. Pettignano, *et al.* concluded that vasoactive support is not considered to be a contraindication to enteral feeding.
Historically, enteral feedings were not administered if an infant was receiving prostaglandin (to treat cardiac defects). Willis, et al., challenged this theory and published results which may change the future of clinical practice. This study demonstrated feeding tolerance in 22 of 34 neonates who were fed enterally while receiving prostaglandin, suggesting that it is safe to feed this patient population (Willis, 2008).

Classification of Premature Infants

Premature infants are born at less than 37 weeks’ gestation. Classifications by weight include:

<table>
<thead>
<tr>
<th>Classification of Preterm Infants by Birthweight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low birth weight (BLW)</td>
</tr>
<tr>
<td>Very low birth weight (VLBW)</td>
</tr>
<tr>
<td>Extremely low birth weight (ELBW)</td>
</tr>
<tr>
<td>Micronate or micropreemie</td>
</tr>
<tr>
<td><2500 gm</td>
</tr>
<tr>
<td><1500 gm</td>
</tr>
<tr>
<td><1000 gm</td>
</tr>
<tr>
<td><750 gm</td>
</tr>
</tbody>
</table>

To evaluate in utero growth, it is suggested to plot an infant’s birth anthropometrics on the Lubchenco Intrauterine Growth Chart (Lubchenco, 1966). An infant is “appropriate for gestation age” (AGA) if his/her weight plots between the 10th and 90th percentiles, small for gestational age (SGA) if below the 10th percentile, and large for gestational age (LGA) if above the 90th percentile. Anderson (1996) noted:

An SGA infant whose intrauterine weight gain is poor, but whose length and head circumference (HC) are between the 10th and 90th percentiles on the (Lubchenco) growth chart has experienced asymmetric intrauterine growth retardation (IUGR). An SGA infant whose length and HC are also below or equal to the 10th percentile is symmetrically growth retarded… which is more detrimental for later growth and development.

Notably, IUGR is more commonly referred to as intrauterine growth restriction in recent literature.

Estimating Nutrient Needs

Infants have a higher metabolic rate and energy requirement per unit of body weight than children and adults (Pierro, 2002). Energy requirements for infants are broken down as follows: 40 to 70 kcal/kg/day for maintenance metabolism, 50 to 70 kcal/kg/day for growth (tissue synthesis and energy stored), and up to 20 kcal/kg/day to cover losses from excrement (Pierro, 2002). Caloric needs for a full-term infant fed enterally are approximately 100 to 120 kcal/kg/day, whereas those who receive PN require fewer calories (80 to 100 kcal/kg/day) because energy is not needed to cover fecal losses, nor is energy being utilized for the thermogenic effect of food (TEE).
The caloric needs of premature infants are even higher than the caloric needs of full-term newborn infants. It is suggested that VLBW neonates require a daily minimum of 60 kcal/kg/day, including 2.5 gm/kg/day of amino acids (AA) to prevent catabolism, and at least 80 to 90 kcal/kg/day, including 2.7 to 3.5 gm AA/kg/day to maintain growth rates similar to those observed in utero (Ibrahim, et al., 2004).

Research previously described preterm newborns as minimally anabolic with parenteral intakes of 2 gm AA/kg/day and 50 to 60 kcal/kg/day (Thureen and Hay, 2001). However, a new study has revealed that provision of as low as 1.1 to 1.5 gm AA/kg/day and 30 kcal/kg/day can change protein balance from substantially negative to zero or slightly positive (Donovan, et al., 2006).

In general, infants who are receiving mechanical ventilator support, sedation and/or paralytic medications have decreased energy needs comparative to the recommended goals sited above. Often meeting 100 percent of resting energy expenditure is sufficient.

Estimated Nutrient Intakes Needed for Fetal Weight Gain

<table>
<thead>
<tr>
<th>Body weight (gm)</th>
<th>500-700</th>
<th>700-900</th>
<th>900-1200</th>
<th>1200-1500</th>
<th>1500-1800</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fetal weight gain (gm/day)</td>
<td>13</td>
<td>16</td>
<td>20</td>
<td>24</td>
<td>26</td>
</tr>
<tr>
<td>Fetal weight gain (gm/kg/day)</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>Protein (gm/kg/day)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parenteral</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.4</td>
<td>3.2</td>
</tr>
<tr>
<td>Enteral</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>3.9</td>
<td>3.6</td>
</tr>
<tr>
<td>Energy (kcal/kg/day)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parenteral</td>
<td>89</td>
<td>92</td>
<td>101</td>
<td>108</td>
<td>109</td>
</tr>
<tr>
<td>Enteral</td>
<td>105</td>
<td>108</td>
<td>119</td>
<td>127</td>
<td>128</td>
</tr>
</tbody>
</table>

WHO Equation

- **Males aged birth-3 years**: 60.9W - 54
- **Females aged birth-3 years**: 61W - 51

Note: W = weight in kilograms. This chart provides a starting point for use in patients 0-3 yrs old that are not in a “typical” healthy state.

Metabolic rates vary widely in neonates over time and among neonates on ECMO, with a mean of 57 plus or minus 11 kcal/kg/day, and a range of 38 to 80 kcal/kg/day (Cilley, et al., 1988). An evaluation of nutrition support in neonates on ECMO demonstrated that a surplus in caloric intake does not improve protein catabolism and merely increased CO₂ production (Shew, 1999). Therefore, calorie goals for infants on ECMO and PN will be lower than expected for most infants in the NICU.

Enterally fed premature infants require approximately 110 to 130 kcal/kg/day. Premature infants receiving PN require an estimated 90 to 110 kcal/kg/day. Some medical circumstances may require even higher caloric intakes to support adequate growth (e.g., brochopulmonary dysplasia or congenital heart disease).

Fluid and Electrolytes

It is essential to re-evaluate an infant’s fluid status daily at minimum, for at least the first week of life. In the first day of life, a full-term infant will require as little as 60 ml/kg/day to meet fluids needs. As the infant matures, fluid needs will increase to 120 to 150 ml/kg/day to allow for increases in renal solute load, stool water output, and infant growth.

<table>
<thead>
<tr>
<th>Birth weight (gm)</th>
<th>Day 1-2</th>
<th>Day 3</th>
<th>DOL 15-30</th>
</tr>
</thead>
<tbody>
<tr>
<td>750-1000</td>
<td>105</td>
<td>140</td>
<td>150</td>
</tr>
<tr>
<td>1001-1250</td>
<td>100</td>
<td>130</td>
<td>140</td>
</tr>
<tr>
<td>1251-1500</td>
<td>90</td>
<td>120</td>
<td>130</td>
</tr>
<tr>
<td>1501-1700</td>
<td>80</td>
<td>110</td>
<td>130</td>
</tr>
<tr>
<td>1701-2000</td>
<td>80</td>
<td>110</td>
<td>130</td>
</tr>
<tr>
<td>Term infant</td>
<td>70</td>
<td>80</td>
<td>100</td>
</tr>
</tbody>
</table>

For most preterm infants, fluid needs are 80 mL/kg/day on Day of Life 1 (DOL1), increasing by 10 to 20 mL/kg/day to 120 to 160 mL/kg/day as the infant matures (Groh-Wargo, et al., 2000). Preterm infants have increased insensible water losses due to the immaturity of their skin and respiratory losses. Thus, infants born extremely premature (i.e. less than 26 weeks gestation) likely have even greater insensible fluid losses compared to other preterm infants. In these cases, fluid needs range from 90 to 105 mL/kg/day on DOL1.

Close monitoring of electrolyte status is essential. The addition of electrolytes to PN may be deferred until the second day of life in some cases. Potassium is generally added once normal kidney status and good urine output are established, and sodium is often added once diuresis begins (Groh-Wargo, et al., 2000). Daily adjustments to electrolyte intake are often necessary. Electrolyte requirements of preterm and full-term infants are generally similar, with the exception of calcium and phosphorus.
Access for Administering PN

PN can be administered through a peripheral vein, as peripheral parenteral nutrition (PPN). PPN requires a relatively large volume to allow for adequate administration of nutrients. In the critically ill infant, nutrient requirements often cannot be met with PPN due to fluid restriction. It is recommended to limit dextrose concentration to 10 to 12.5 percent with a final osmolality of 900 mOsm/kg to minimize risk of phlebitis and infiltration (Committee on Nutrition, 1983). Total parenteral nutrition (TPN) requires central vein access and allows for administration of a solution with a higher osmolality (above 900 mOsm/kg). X-ray confirmation of central line placement is essential prior to administration of a solution with a high osmolality. Dextrose concentration of PN solution administered via a central line is generally limited to a maximum of 25 to 30 percent.

Venous access is not defined by the initial point of entry, but by the position of the catheter tip. With central lines (CVL) the catheter tip terminates in the superior vena cava (SVC) or the right atrium of the heart. Examples of CVL that are found in infants include umbilical venous catheters (UVC), non-tunneled lines, and tunneled lines. UVC are generally placed after birth and are removed within two weeks due to increased risk of infection (Pereira, 1995).

Non-tunneled lines include femoral, jugular, subclavian and peripherally/percutaneously inserted central catheters (PICC). PICC lines are generally placed when a long-term intravenous (IV) access is needed, and duration may vary from several days to months. PICC lines may be central or peripheral, depending on the placement of the catheter tip. If the PICC line terminates in the SVC it is considered central, and termination in other vessels needs to be individually evaluated to determine the maximum dextrose concentration that can be safely infused. A Broviac line is the tunneled line typically used in pediatric patients, comparable to a Groshong or Hickman in adults. Broviac lines are often placed when an infant is expected to be discharged on home PN support, as with SBS patients.
Macronutrients

Parenterally, carbohydrates are administered in the form of dextrose, which provides 3.4 kcal per gram. Protein is administered as a crystalline amino acid solution, which provides 4 kcal/gm. TrophAmine and Aminosyn PF are amino acid solutions most appropriate for use in infants because of the addition of taurine, N-acetyl-L-tyrosine, glutamic acid and aspartic acid (Groh-Wargo, et al., 2000).

TrophAmine is formulated to promote growth in neonates and young infants and to achieve a plasma amino acid pattern similar to that of normal post-prandial breast-fed infants. Research has shown a potential decrease in PN-associated cholestasis with administration of TrophAmine when compared with Aminosyn PF (Wright, et al., 2003). Another benefit of TrophAmine is that when L-cysteine is added, there is an increased solubility of calcium and phosphorus.

In the US, intravenous fat emulsion (i.e. lipids) are comprised of either soybean oil or a combination of safflower and soybean oil. Intravenous fat emulsions (IVFE) provide 10 kcal/gm regardless of the product concentration, and are available in 10 percent (1.1 kcal/mL), and 20 percent (2 kcal/mL), and 30 percent concentrations. For infants, the 20 percent concentration is preferred over the 10 percent product because it allows adequate lipid intake in less volume. Clinical experience with administration of 30 percent lipid emulsions to infants and pediatrics is scarce.

Also, as Groh-Wargo, et al., noted, the “10 percent solution has a higher phospholipid/triglyceride weight ratio than the 20 percent solution, and this higher ratio may affect the activity of lipoprotein lipase, the primary enzyme for lipid clearance, resulting in higher triglycerides and other plasma lipids in infants” (Groh-Wargo, et al., 2000).

Not only are lipids a concentrated source of calories, but they also provide essential fatty acids (EFA) for cell membrane integrity and brain development. Lipids also help to prolong the integrity of peripheral lines because of their lower osmolality. It is crucial to provide a minimum of 0.5 to 1.0 gm lipids/kg/day to prevent EFA deficiency, which can develop in premature infants during the first week of life and as early as the second day of life (Groh-Wargo, et al., 2000). Another source cites that premature infants require at least 0.6 to 0.8 gm/kg/day (Baker, 2007). EFA deficiency was historically defined as a triene-to-tetraene ratio equal to or greater than 0.4 (Kerner, 1996); however, Mayo Clinical Laboratories recently developed a new set of standards for assessing the triene-to-tetraene ratio for various age groups, but this is only applicable if the test is run by their lab.

Soybean and safflower oil-based lipid emulsions are rich in pro-inflammatory omega-6 fatty acids. Many clinicians feel that the omega-6 content of currently available IVFE is contributing to the development of PN-associated cholestasis, particularly in infants and children. Some clinicians have modified their practice and are now using extreme caution when administering IVFE to infants who are anticipated to be long-term PN dependent. Although there is limited data to guide and support this practice, many NICU are limiting IVFE to 1 gm/kg/day. However, in doing so there is a calorie deficit which must be met; usually the additional calories are provided as glucose, resulting in higher glucose infusion rates (GIR).

Although not yet approved by the FDA, a large clinical trial recently demonstrated that use of a fish oil-based lipid emulsion called Omegaven® (Fresenius) results in significant improvement of PN-related cholestasis in infants and children (Gura, 2006). The theory behind this is that Omegaven provides omega-3 fatty acids, which have anti-inflammatory properties. In this study, subjects received 1 gm/kg/day of lipids from Omegaven; no other source of lipids was provided. Of note, Fresenius states that Omegaven is not intended to be administered as the exclusive lipid source, and when Omegaven is administered with Intralipid®, it is given at a dose of 0.2 mg/kg/day (http://www.oley.org/lifeline/PNALD.html). One article suggested that 100 percent fish oil emulsion provides adequate EFA to prevent deficiency, when provided at the dose of 1 gm/kg/day (Gura, 2005).
A recent study, completed by the same authors, reviewed the safety and efficacy of using Omegaven in infants with cholestasis (Gura, 2008). This study revealed that administering Omegaven at 1 gm/kg/day to infants is effective in reversing cholestasis, and none of the subjects developed EFA deficiency. A 2009 study by Puder, et al., compared the use of soybean oil-based IVFE versus Omegaven (Puder, 2009). The results were as follows:

“Among survivors not transplanted during PN, cholestasis reversed while receiving PN in 19 of 38 patients in the fish oil cohort versus 2 of 36 patients in the soybean oil cohort… Subjects receiving fish oil-based ILE experienced reversal of cholestasis 6 times faster (95% CI: 2.0-37.3) than those receiving soybean oil-based ILE. The provision of fish oil-based ILE was not associated with hypertriglyceridemia, coagulopathy, or essential fatty acid deficiency.”

Although this product is available in other countries, Omegaven can only be prescribed in the US via FDA compassionate approval (in addition to obtaining your hospital’s Institutional Review Board approval), if the patient meets the criteria. Omegaven is not currently indicated for the prevention of PN-associated cholestasis in patients. Moreover, the cost and logistics of obtaining the product remain a challenge. Refer to this resource for further information on the steps necessary to obtain this product:

Initiating and Titrating Parenteral Nutrition

Dextrose infusions initially are provided at 4 to 6 mg/kg/min./day and increased gradually, as long as serum glucose is within normal ranges (above 70 mg/dL and less than 120 mg/dL) (Pereira, 1995). It is recommended to increase dextrose infusion by 1 to 2 mg/kg/minute/day (Lee and Werlin, 1997). This equates to increases of approximately 2.5 to 5 percent dextrose daily and is generally well tolerated. Daily increments in dextrose concentrations should not exceed 5 percent because of hyperglycemia risk (Pereira, 1995). Until recently, many clinicians used 12 mg/kg/min./day as the maximum glucose infusion; however, due to the change in practice with IVFE administration, some are administering a maximum of 14 to 18 mg/kg/min./day.

Occasionally, it may be necessary to administer insulin to facilitate blood sugar control if a dextrose infusion of 4 to 6 mg/kg/minute/day is not tolerated due to hyperglycemia, thus facilitating provision of sufficient dextrose for the infant’s brain and meeting basal caloric requirements.

Historically it was felt that there needed to be a titration of not only dextrose, but also AA and lipids when initiating PN to facilitate tolerance and minimize the risk of metabolic disturbances (i.e. acidosis, hypertriglyceridemia). Recent studies have demonstrated that it is appropriate to practice a more aggressive introduction of PN in order to promote positive nitrogen balance and growth (Ibrahim, et al., 2004). Minimal protein intake is the amount needed to prevent breakdown of protein stores (Thureen and Hay, 2001).

Protein restriction may be warranted in certain instances, such as renal or hepatic failure; however “... protein restriction should be done with caution and consideration should be given to the need for adequate protein to support growth and development” (Mirtallo, et al., 2004).

Ibrahim, et al., (2004) demonstrated that VLBW infants tolerated the initiation of PN with 3.5 gm AA/kg/day and 3 gm/kg/day of 20 percent Intralipid, starting within one hour of birth. Nitrogen retention was significantly greater in infants who received early aggressive PN support (Ibrahim, et al., 2004). Many neonatologists hesitate to initiate PN this aggressively, especially in micropremies. Dietitians may find that a “conservative” PN initiation may be more readily accepted within 24 hours of birth, assuming normal renal function — e.g. initiating with 2 to 3 gm AA/kg/day and 2 to 3 gm/kg/day of 20 percent Intralipid.
For infants weighing less than 1 kg, it is best to initiate lipids at 2.0 gm/kg/day and advance by 0.5 to 1.0 gm/kg/day to a goal of 3.0 gm/kg/day. Lipids can usually be well tolerated when initiated at 3.0 gm/kg/day for infants weighing more than 1 kg. Serum triglycerides (TG) should be measured at baseline, with each lipid increase, and weekly thereafter. Serum TG below 150 mg/dL indicate satisfactory tolerance and the lipid rate may be increased. Many clinicians tolerate levels up to 200 mg/dL (Groh-Wargo, et al., 2000). To avoid hyperlipidemia, the rate of lipid infusion should not exceed 0.15 gm/kg/hour. Infusion of 3 gm/kg/day over 24 hours would result in a rate of 0.125 gm/kg/hour (Groh-Wargo, et al., 2000).

Some NICU are now utilizing “stock” amino acid and dextrose solution (e.g. “starter PN”) to facilitate the timely initiation of PN, which now may be started in the delivery room or on the first day of life. The composition of this type of PN varies from D5 to D10 percent, and from 2 to 5 percent neonatal amino acids. Some institutions have added electrolytes (e.g. calcium gluconate), but many have chosen not to. Generally, administration of “stock PN” is limited to 60 to 80 mL/kg/day to minimize the risk of excessive protein and dextrose administration. Additional intravenous fluids and electrolytes may be administered as needed. Suggested contraindications for the use of “stock PN” include patients with possible metabolic disorders, renal or hepatic failure.

<table>
<thead>
<tr>
<th>Recommendations for Initiation & Advancement of Parenteral Nutrition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiation</td>
</tr>
<tr>
<td>Infants (<1 yr)</td>
</tr>
<tr>
<td>Protein (gm/kg/day)</td>
</tr>
<tr>
<td>CHO (mg/kg/min)</td>
</tr>
<tr>
<td>Fat (gm/kg/day)</td>
</tr>
</tbody>
</table>

Vitamins, Minerals and Trace Elements

Available pediatric parenteral multivitamins do not meet the vitamin needs of preterm infants (Greene, et al., 1988). The available formulations provide higher amounts of thiamin, riboflavin, pyridoxine and cyanocobalamin, and lower amounts of fat-soluble vitamins (e.g. vitamin A), than recommended (Greene, et al., 1988).

Available trace element products do not adequately meet the needs of preterm neonates either. Specifically, if sufficient zinc is administered, manganese is provided in excessive amounts. However, short-term use of a standard neonatal trace element product is considered safe. Many institutions with NICUs have begun developing their own trace element mixtures from individual trace element products to better meet the needs of their smallest patients. In cases of specific medical conditions, such as renal or hepatic disease, some units will use “custom” trace elements.
Zinc is important for the maintenance of cell growth and development. When PN is supplemental to enteral nutrition or of short duration, zinc is the only trace element that requires supplementation. Some conditions that require additional zinc intake include elevated urinary zinc excretion (e.g., high output renal failure), increased GI excretion (e.g., high volume stool loss and fistula/stoma losses), and wounds (e.g., surgical incision dehiscence).

Copper is an essential constituent of many enzymes. Current daily recommendations are adequate to prevent deficiency in preterm infants. Copper deficiency is more likely to occur with high dose zinc therapy, due to their inverse relationship. Clinical manifestations of copper deficiency include hypochromic anemia that is unresponsive to iron therapy, neutropenia and osteoporosis. Rapid growth in VLBW infants increases the risk of deficiency.

Conditions requiring higher copper intake include increased biliary losses due to jejunostomy and losses via external biliary drainage. These conditions may require an additional 10 to 15 mcg/kg/day. Historically, copper was withheld in PN for patients with cholestasis; however, cases of copper deficiency have recently been reported when copper was withheld in PN (Hurwitz, et al., 2004). In patients with cholestasis, it is recommended to reduce supplementation by 50 percent (i.e., 10 mcg/kg/day), monitor monthly serum copper levels and ceruloplasmin, and adjust supplementation accordingly (McFarland, 2009).

Manganese is an important component of several enzymes (Reifen, 1993). Manganese deficiency has not been documented in humans. However, manganese toxicity has been reported. Manganese supplementation in PN should be withheld in patients with cholestasis or other liver function impairment (Reifen, 1993; Fok, et al., 2001). Fok, et al., provided evidence suggesting that high manganese intake contributes to the development of cholestasis. Manganese should therefore be used with caution in PN provided to infants because they are more susceptible to cholestasis (Fok, et al., 2001). It is recommended to monitor monthly serum manganese levels and adjust supplementation as needed.

Selenium is a component of the enzyme glutathione peroxidase, which is involved in protecting cell membranes from peroxidase damage through detoxification of peroxides and free radicals (Reifen, 1993). Supplementation with selenium is recommended in long-term PN (i.e., longer than one month). It is recommended to decrease selenium intake when renal dysfunction is present.

<table>
<thead>
<tr>
<th>Recommendations for Pediatric Multiple Vitamins*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
</tr>
<tr>
<td>Weight (kg)</td>
</tr>
<tr>
<td><1</td>
</tr>
<tr>
<td>1-3</td>
</tr>
<tr>
<td>>3</td>
</tr>
</tbody>
</table>

* Pediatric multiple vitamin formulation (5 ml): vit A 2300 IU; vit D 400 IU; vit E 7 IU; vit K 200 mcg; vit C 80 mg; vit B1 1.2 mg vit B2 1.4 mg; niacin 17 mg; pantothenic acid 5 mg; vit B6 1 mg; vit B12 1 mcg; biotin 20 mcg; folic acid 140 mcg.

Chromium potentiates the action of insulin and is required for growth in light of its role in glucose, protein and lipid metabolism (Reifen, 1993). It is also recommended to decrease chromium intake with renal dysfunction.

Molybdenum supplementation is recommended in cases when exclusive PN exceeds four weeks. Deficiency of molybdenum has not been reported in premature infants; however, one adult case of deficiency has been documented (Reifen, 1993).

Iodine is often omitted from PN given that iodine-containing disinfectants and detergents are used on the skin and absorbed. The Committee on Clinical Practice Issues of the American Society of Clinical Nutrition recommended parenteral intakes of iodine at 1.0 mcg/kg/day for the preterm infant (Reifen, 1993).

Iron supplementation should be considered only among long-term PN-dependent patients who are not receiving frequent blood transfusions. Iron supplementation of 100 mcg/kg/day may be safely delayed until three months of age in term infants. Preterm infants not receiving blood transfusions may benefit from iron supplementation of 100 to 200 mcg/kg/day at two months of age (Reifen, 1993). Of note, platelets are the only blood product that does not contain iron. Monitoring iron status is imperative with iron supplementation as there is a risk of iron overload (Mirtallo, et al., 2004).

Trace Element Daily Requirements

<table>
<thead>
<tr>
<th>Trace Element</th>
<th>Preterm Neonates <3 kg (mcg/kg/day)</th>
<th>Term Neonates 3-10 kg (mcg/kg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zinc</td>
<td>400</td>
<td>50 - 250</td>
</tr>
<tr>
<td>Copper</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Manganese</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Chromium</td>
<td>0.05 - 0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Selenium</td>
<td>1.5 - 2</td>
<td>2</td>
</tr>
</tbody>
</table>

Calcium and Phosphorus

Fetal accretion rates of calcium and phosphorus reach their peak during the third trimester, with upwards of 80 percent of fetal skeletal mineralization taking place during this time period. Therefore, premature infants are at an increased risk of osteopenia simply due to their prematurity. Ideally, the goal is to achieve intrauterine rates of bone mineralization; however, there are many barriers to this including the delayed establishment of full enteral feeds, prolonged PN, and the chronic use of medications that increase mineral excretion (e.g. furosemide, aldactone, sodium bicarbonate, corticosteroids).

When maximizing calcium and phosphorus in PN, there is a risk of precipitation. It is essential to collaborate with a pharmacist to review solubility curves to identify safe, yet maximum levels of calcium and phosphorus. Maximal retention can be accomplished when providing between 1.3 to 1 and 1.7 to 1 calcium/phosphorus by weight, or 1.1 to 1.3 to 1 by molar ratio. Calcium/phosphorus ratios under 1 to 1 by weight (0.8 to 1 by molar...
ratio) and alternating daily infusions of calcium and phosphorus are not recommended. (Groh-Wargo, et al., 2000). Calcium supplementation is usually provided as calcium gluconate and phosphorus in the form of sodium phosphate. Potassium phosphate is generally not used because of its high aluminum content.

Maximizing Calcium and Phosphorus in PN

<table>
<thead>
<tr>
<th>mEq CaGluc/kg</th>
<th>mg Ca/kg (elemental)</th>
<th>mMol Ca/kg</th>
<th>mEq NaPhos/kg</th>
<th>mMol Phos/kg</th>
<th>mg Phos/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>60</td>
<td>1.5</td>
<td>2</td>
<td>1.5</td>
<td>46</td>
</tr>
<tr>
<td>3.5</td>
<td>70</td>
<td>1.75</td>
<td>2.33</td>
<td>1.75</td>
<td>53.6</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td>2</td>
<td>2.67</td>
<td>2</td>
<td>61.4</td>
</tr>
<tr>
<td>4.5</td>
<td>90</td>
<td>2.25</td>
<td>3</td>
<td>2.25</td>
<td>69</td>
</tr>
</tbody>
</table>

*Choose one calcium and one phosphorus column within the same horizontal row

Adapted from information by Donna Pryor, RD, CSP, CNSD and Margaret Begany, RD, CSP, LDN

PN Additives: Heparin, Carnitine and Cysteine

Addition of heparin to PN solutions “reduces the formation of a fibrin sheath around the catheter, may reduce phlebitis… and increases the duration of catheter patency” (Groh-Wargo, et al., 2000). Heparin also stimulates the release of lipoprotein lipase, which may improve lipid clearance. It is recommended to add 0.25 to 1.0 units heparin/mL of PN solution (Groh-Wargo, et al., 2000). There is an increased risk of anti-coagulation with the higher doses of heparin.

Carnitine is essential for optimum oxidation of fatty acids in the mitochondria, according to Groh-Wargo, et al. (2000). Impaired fatty acid oxidation can present as hypertriglyceridemia. Carnitine synthesis and storage are not optimum at birth, when compared to older children and adults. Premature infants less than 34 weeks gestation receiving PN without carnitine can develop carnitine deficiency 6 to 10 days after birth (Schmidt-Sommerfield, et al., 1982). Carnitor® (Sigma-Tau Pharmaceuticals) is available for intravenous supplementation. An initial, safe dose to consider for infants on exclusive PN for more than four weeks is 8 to 10 mg/kg/day (Groh-Wargo, et al., 2000).

A recent study revealed that parenteral supplementation of 20 mg/kg/day carnitine resulted in plasma total carnitine concentrations that exceeded the reference range, which supports the use of smaller doses of carnitine supplementation (Crill, et al., 2006). It is now recommended to monitor monthly carnitine levels and titrate supplementation from 8 to 10 mg/kg/day, up to a maximum of 20 mg/kg/day.

Cysteine, a conditionally essential amino acid, is not a component of crystalline amino acid solutions because it is unstable and will form an insoluble precipitate (Groh-Wargo, et al., 2000). In adults, cysteine can be synthesized from methionine; however, preterm infants lack adequate hepatic cystathionase to facilitate this conversion. Commonly recommended dosing for L-cysteine hydrochloride is 40 mg per gram of amino acids. Current practice suggests supplementation with L-cysteine hydrochloride for the first year of life, although practice varies widely (Mirtallo, et al., 2004).
One benefit of the addition of L-cysteine hydrochloride to PN is the decrease in the pH of the solution, which increases the solubility of supplemental calcium and phosphorus. It should be noted though that the addition of cysteine to PN warrants close monitoring of an infant’s acid-base status as it may predispose infants to acidosis, and acetate may need to be added to the solution.

Complications of PN

Short-term potential adverse effects of PN include the following: infection, hyperglycemia, electrolyte abnormalities, disturbance of acid-base balance, hypertriglyceridemia, bacterial translocation and compromised gut integrity. With long-term PN support adverse effects may include: infection, PN-associated cholestasis, metabolic complications, disturbance of acid-base balance, osteopenia, risk of vitamin/mineral deficiency or toxicity, and continued risk of bacterial translocation. Nosocomial infections appear to result either from improper care of the catheter and/or frequent use of the catheter for purposes other than delivery of nutrients (e.g. blood draws, medication administration) (Reifen, 1993).

Monitoring

Prior to initiation of PN support, it is recommended to check the following biochemical indices: basic metabolic panel (BMP), calcium, magnesium, phosphorus, liver function tests (i.e. Alk Phos, ALT, AST, GGT), total bilirubin, conjugated or direct bilirubin, pre-albumin, albumin and triglyceride. The BMP, calcium, magnesium, phosphorus and triglyceride levels should be checked daily for three days after the initiation of PN support, or until indices are stable. Weekly LFTs, total bilirubin, conjugated or direct bilirubin, pre-albumin, albumin and triglyceride should be monitored.

Other biochemical studies (e.g. iron status, vitamin levels, ionized calcium, serum zinc, copper, manganese) may be warranted on an individual basis. Patients on long-term PN, such as those with SBS, need monthly monitoring of vitamin and mineral status.

Emerging Issues

It has come to light that various products utilized during PN compounding have a high aluminum content, which can be especially dangerous for infants and children. Preterm infants are extremely vulnerable to aluminum toxicity due to immature renal function and the likelihood for long-term PN (Mirtallo, et al., 2004).

Since July 2004, FDA mandates that products used in compounding PN should note the aluminum content on the label. The FDA identified 5 mcg/kg/day as the maximum amount of aluminum that can be safely tolerated and amounts exceeding this limit may be associated with central nervous system or bone toxicity (Mirtallo, et al., 2004).

It is essential for pharmacists, dietitians, physicians, and nurses to collaborate to reduce the use of higher aluminum content products. However, it is difficult to achieve the recommended aluminum intake level set by the FDA when patients are receiving multiple medications and PN. A reasonable goal for clinicians is to minimize aluminum exposure.

In summary, providing PN is wrought with unique potential risks and complications to these fragile infants and calls for a diligent interdisciplinary team approach. Early enteral nutrition as soon as medically appropriate is the key to minimizing the potential adverse effects of PN support.
References

Examination for PNN11

1. PN is most often administered to infants in the NICU with which of the following:
 a. Respiratory distress
 b. Necrotizing enterocolitis
 c. Renal insufficiency
 d. Intrauterine growth retardation

2. A low birth weight (LBW) infant weighs:
 a. Less than 1000 gm
 b. Less than 1500 gm
 c. Less than 2500 gm
 d. Less than 3000 gm

3. If an infant’s weight plots between the 10th and 90th percentiles, s/he is classified as:
 a. SGA (small for gestational age)
 b. IUGR (intrauterine growth retardation)
 c. LGA (large for gestational age)
 d. AGA (appropriate for gestational age)

4. When given exclusive parenteral nutrition support, preterm infants generally require:
 a. 50 to 60 kcal/kg
 b. 70 to 80 kcal/kg
 c. 90 to 110 kcal/kg
 d. 120 kcal/kg

5. Preterm infants have increased insensible water losses due to:
 a. Immaturity of their skin and respiratory losses
 b. Increased urinary output and increased fecal output
 c. Respiratory losses and increased fecal output
 d. Increased tissue growth and increased urinary output

6. The maximum osmolality of a PN solution infused via a peripheral vein (PPN) is:
 a. 500 mOsm
 b. 900 mOsm
 c. 1200 mOsm
 d. none of the above

7. A PICC may be considered central or peripheral access, depending on the position of the catheter tip.
 a. True
 b. False
8. The minimum amount of lipids that should be provided to prevent EFA deficiency is:
 a. 4 gm/kg
 b. 2 to 3 gm/kg
 c. 0.125 gm/kg/hr
 d. 0.5 to 1.0 gm/kg

9. Which of the following is the appropriate initial infusion rate for dextrose and the appropriate daily increase in dextrose administration?
 a. Begin at 1 to 2 mg/kg/minute and increase by 1 to 2 mg/kg/minute/day
 b. Begin at 3 to 4 mg/kg/minute and increase by 2 to 3 mg/kg/minute/day
 c. Begin at 4 to 6 mg/kg/minute and increase by 1 to 2 mg/kg/minute/day
 d. Begin at 5 to 6 mg/kg/minute and increase by 2 to 3 mg/kg/minute/day

10. Preterm infants, not receiving blood transfusions, should receive which of the following iron supplementation:
 a. No iron is needed, as supplemental iron is unsafe for preterm infants
 b. 100 to 200 mcg/kg/day beginning at two months of age
 c. 200 to 300 mcg/kg/day beginning at three months of age
 d. Limit iron supplementation to 100 mcg/kg/day and start when indicated
How to Earn Continuing Education Credit

1. **Read or watch the course material.** Don’t forget to review the course objectives and take note of course tools available to you. The objectives provide specific learning goals and an overview of the course. Read the material in the order presented. If you need help with the material, please e-mail ce@continuingeducation.com with your specific question. We will forward your inquiry to the author, so allow adequate time for a reply.

2. **CE credit will not be awarded for this course after September 30, 2014.**

3. If you have an account on Nurse.com, TodayinPT.com, TodayinOT.com, or NutritionDimension.com, please use that account username and password to sign in on ContinuingEducation.com. If you don’t already have one, please sign up for a user account. Click “sign up” or “login” in the upper right hand corner of any page on ContinuingEducation.com. If you have a CE Direct login ID and password (generally provided by your employer), please log in as you normally would at www.continuingeducation.com/cedirect and search for this topic title.

4. Go to the “my courses” section of “my account.” Click on the title of the course you want to complete and then on “start course.”

5. Click “start test” to begin the exam. To earn contact hours, you must achieve a score of 75% on your multiple-choice exam for most courses. You may retake the test as many times as necessary to pass. Clues are not provided on the exam. Certificates will be date/time stamped with the time and date of the day the user passes the test (Eastern Time, U.S.).

6. After successfully completing your exam click, “complete required survey.” In order to complete the test process and receive your certificate of completion, you must take a few moments to answer a brief survey about the course material.

7. After completing the survey, you will be taken to your transcript. Under **Courses Completed**, you can view, print, or e-mail your certificate.

8. Three months after you complete a course, you will receive an e-mail asking you to complete a follow-up survey. This is vital to our educational requirements so we can report our quality outcomes and effectiveness.

We report course completions to National Commission for Health Education Credentialing (NCHEC) quarterly and The Association of Nutrition & Foodservice (ANFP, formerly DMA) monthly. Other professions should follow their certifying organization’s reporting instructions. We keep a record of course completions for 7 years.

A Word About Copyrights:
We encourage health professionals to use material from this course in their practice. Please follow these guidelines:

1. Credit the author, Nutrition Dimension/Gannett Education and any referenced source.
2. Course material may not be sold, published, or made part of any program for which a fee is charged, without written permission from Nutrition Dimension/Gannett Education.
3. Inform Nutrition Dimension/Gannett Education by letter if you wish to make significant use of material from this course (e.g. if you wish to duplicate Appendix pages for a training session or patient handout).